材料熱力學一

Chapter3 Second Law of Thermodynamics

§ 3-1 Introduction:

- * Reversible & Irreversible processes
- * Degree of irreversibility
- * Reversible heat engine → Carnot cycle (Engine)
- * Criterion for Equilibrium $\rightarrow S_{U,V}=S_{max}$

§ 3-2 Spontaneous (Natural) Process:

- * Equilibrium state: rest state

 Nonequilibrium state: spontaneous change to equilibrium
- * Spontaneous process is irreversible
 - case 1: mixing of two gases
 - case 2: contact of two bodies at different temperature
- * Isolated system: no mass and energy transfer with surrounding i.e. constant U, V, m_i

Closed system: no mass transfer, but energy transfer exists

... constant m_i

Open system: both mass and energy transfer

§ Entropy and Degree of Irreversibility:

 $\int (1)$ conversion of work to heat

(2) heat flow down a temperature gradient

processes:

(1) T₂, W(weight fall), Q(heat produced)

(2) Q(heat flow),
$$T_2 \longrightarrow T_1$$

(3) T₁, W(weight fall), Q(heat produced)

$$\therefore$$
 [(1)+(2) \iff (3)]

process (3) is more irreversible than (1)

compare
$$\left(\frac{Q}{T}\right)$$
 process (1): $\frac{Q}{T_2}$ process (3): $\frac{Q}{T_1}$

$$\therefore T_2 > T_1 \qquad \therefore \left(\frac{Q}{T_2}\right)_{(1)} < \left(\frac{Q}{T_1}\right)_{(3)}$$

we call
$$S \Longrightarrow \left(\frac{Q}{T}\right)$$

and $\triangle S = \left(\frac{Q}{T}\right)$

 $... \triangle S$ is a measure of degree of irreversibility

§ Reversible Processes:

- * Irreversibility is zero and no degradation
- * The process path passes through a continuum of equilibrium states
- * It is an imaginary path
- * Each step is under an infinitesimally small driving force

§ Example of Reversible & Irreversible Process:

Evaporation and Condensation of water

* Frictionless piston

Heat reservoir at T

Equilibrium: $P_{H2O}(T) = P_{ext}$

Process 1: sudden finite change of $\triangle P$

(1) decrease pressure: $(P_{ext} - \triangle P)$

spontaneous evaporation \iff heat absorbed, $(T_w \downarrow)$ assume: 1 mole H_2O evaporated molar volume of H_2O vapor V

- ...work done by system: $W_1 = (P_{ext} \triangle P)V$
- (2) increase pressure: $(P_{ext} \triangle P) + \triangle P$ spontaneous condensation \iff exothermic $(T_w \uparrow)$ work done on system: $W_2 = -P_{ext} \cdot V$
- \therefore (1)+(2) permanent change in external agency: ($\triangle P \cdot V$)

Process 2: infinitesimal change of pressure $\delta p \rightarrow 0$

$$(P_{ext}+\delta p) \longrightarrow P_{ext}$$

then
$$(\delta p \cdot V) \rightarrow 0$$

$$\begin{cases} W_1 = (P_{ext} - \delta p)V \sim P_{ext} \\ W_2 = -(P_{ext} + \delta p)V \sim -P_{ext} \end{cases}$$

- ∴no permanent change!
- ...If the process is infinitely slow, then a complete reversibility is approached

§ Entropy and Reversible Heat:

1. Evaporation Only:

 $\begin{cases} \text{ work done by system for irreversible process: } W=(P_{ext}-\triangle P)V \\ \text{ work done by system for reversible process: } W_{rev}=W_{max}=P_{ext} \cdot V \end{cases}$

$$Q_{deg} (degraded heat) \equiv (Q_{rev} - Q) = (W_{max} - W) > 0$$

§ Less heat is transferred to cylinder from reservoir during

irreversible process

* Reversible process:

$$\triangle$$
S reservoir= $-\frac{Q_{rev}}{T}$

$$\triangle S_{\text{cylinder}} = \frac{Q_{rev}}{T}$$

$$\therefore \triangle S_{tot} = \triangle S_{reservoir} + \triangle S_{cylinder} = 0$$

* Irreversible process:

$$\triangle S_{reservoir} = -\frac{Q}{T}$$

$$\triangle S_{\text{cylinder}} = \frac{Q}{T} + \frac{Q_{\text{deg}}}{T} = \frac{Q}{T} + \frac{Q_{rev} - Q}{T} = \frac{Q_{rev}}{T}$$

$$\therefore \triangle S_{tot} = \frac{Q_{deg}}{T} = \frac{Q_{rev} - Q}{T} = \triangle S_{irr} > 0 \text{ (entropy produced)}$$

$$\therefore \triangle S_{\text{cylinder}} = \frac{Q}{T} + \triangle S_{\text{irr}}$$

$$= \triangle S$$
 trans. $+ \triangle S$ produced

and
$$(\triangle S_{cylinder})_{rev} = (\triangle S_{cylinder})_{irr}$$

2. Condensation only:

 $\begin{cases} \text{ work done on system for irreversible process: } W=(P_{ext}+\triangle P)V \\ \text{ work done on system for reversible process: } W_{rev}=W_{min}=P_{ext} \cdot V \end{cases}$

$$\therefore Q_{\text{deg}} = (W - W_{\text{min}}) = -(Q_{\text{rev}} - Q) > 0$$

* Reversible condensation:

$$\triangle S_{\text{reservoir}} = \frac{Q_{rev}}{T}$$

$$\triangle S_{\text{cylinder}} = -\frac{Q_{rev}}{T}$$

$$\triangle S_{\text{tot}} = 0$$

* Irreversible condensation:

$$\begin{cases} \triangle S_{\text{reservoir}} = \frac{Q}{T} \\ \triangle S_{\text{cylinder}} = -\frac{Q}{T} + \left(\frac{Q_{\text{deg}}}{T}\right) = -\frac{Q_{\text{rev}}}{T} \end{cases}$$

$$\therefore \triangle S_{\text{tot}} = \frac{Q_{\text{deg}}}{T} = \triangle S_{\text{irr}} > 0 \quad \text{(entropy produced)}$$

$$\triangle S_{\text{cylinder}} = \triangle S_{\text{trans}} + \triangle S_{\text{produced}}$$

$$(\triangle S_{\text{cylinder}})_{\text{rev}} = (\triangle S_{\text{cylinder}})_{\text{irr}}$$

state $A \rightarrow$ state B (cylinder only)

$$\triangle S = S_B - S_A = \frac{Q_{rev}}{T} = \left(\frac{Q}{T} + \Delta S_{irr}\right) = \triangle S_{trans} + \triangle S_{produced}$$

for reversible process: $\triangle S_{irr}$ ($\triangle S_{produced}$)=0

§ Summary

- 1. Entropy of an isolated system increases, which system undergoes an irreversible process. $\triangle S_{tot} > 0$
- 2. Entropy is not created ($\triangle S_p=0$) for a reversible process. $\triangle S_{tot}=0$, $\triangle S_{sys}=-\triangle S_{surrounding}$ (Entropy transferred from one part to another)
- 3. Entropy is a state function. $(\triangle S_{cylinder})_{rev} = (\triangle S_{cylinder})_{irr}$ (system: cylinder)

§ Reversible Isothermal Compression of one mole ideal gases

$$(V_A, T) \rightarrow (V_B, T)$$
 $V_B < V_A$
 $dT=0$, $\triangle U=0$, $\therefore Q=W$
 $W = \int_{V_A}^{V_B} P dV = RT \ln \left(\frac{V_B}{V_A} \right)$ W < 0, work done "ON" system

§ Reversible Adiabatic Expansion of ideal gas

$$(P_A, T_A)$$
 Rev (P_B, T_B) $P_A > P_B$ (Expansion)

Adiabatic: Q=0

(Reversible + Adiabatic): PV^{γ} =const Q=0

Equal Entropy (Isentropic)

 (P_A, T_A) Irrev (P_B, T_B)

 T_{B} ' > T_{B} ('.'Heat produced by degradation after irreversible adiabatic expansion remains in gas)

...More irreversible \implies T_B ' \uparrow and U_B ' \uparrow

§ Properties of Heat Engines

$$\eta \text{ (Efficiency)} = \frac{work \ done}{heat \ input} = \frac{w}{q_2}$$

* For a Carnot cycle process: two rev. isothermal two rev. adiabatic

"any thermodynamic substance"

§ Carnot Engine is an ideal engine which has the maximum efficiency

$$W=W_1+W_2-W_3-W_4=(area\ ABCD)$$

$$Q = q_2 - q_1$$

One cycle,
$$\triangle U=0$$
, $\therefore W=Q=q_2-q_1$

$$\eta_c = \text{Efficiency} = \frac{w}{q_2} = \frac{q_2 - q_1}{q_2}$$

 $(\eta' > \eta)$ Greater efficiency "could be obtained" by two methods

(1)
$$q_2$$
'= q_2 , if w '> w (η '> η) i.e. $(q_2$ '- q_1 ') > $(q_2$ - q_1)
$$\therefore q_1$$
'< q_1

(2) w'=w if
$$q_2$$
' < q_2

$$\therefore q_2' - q_1' = q_2 - q_1$$
 then $q_1' < q_1$

consider two engines combined together:

(1) take
$$q_2' = q_2$$

 $w' = q_2' - q_1' = q_2 - q_1'$
 $-w = -q_2 + q_1$
 \therefore if $w' - w = (q_1 - q_1') > 0$

work (w'-w) > 0 is obtained from $(q_1 - q_1')$ heat only from one reservoir \Longrightarrow impossible !!

... Preliminary statement of 2nd law:

<u>Thomsen principle</u>: it is impossible, by a cyclic process, to take heat from heat from a reservoir and convert it to work, without transferring heat to another cold reservoir

(2) engine B
$$w'=q_2'-q_1'$$

engine A $-w=-q_2+q_1$
Take $w'=w$
 $q_2'-q_1'=+q_2-q_1$
if $\therefore (q_2-q_2')=(q_1-q_1')=q>0$

heat q= is transferred from (low t_1) to (height t_2) \Longrightarrow impossible!! Clausius principle: It is impossible to transfer heat from a cold to a hot reservoir without converting a certain work to heat

§ Thermodynamic Temperature Scale

* All reversible Carnot cycles operating between the same upper and lower temperature must have the same (maximum) efficiency, it is "independent of working substance" and is

$$\therefore \eta_c = \frac{q_2 - q_1}{q_2} = 1 - \frac{q_1}{q_2} = f'(t_1, t_2)$$

a function only of temperatures t₁,t₂

$$\therefore \frac{q_1}{q_2} = f(t_1, t_2) = ?$$

* consider two Carnot cycles $(t_1,t_2)+(t_2,t_3)=(t_1,t_3)$

$$\frac{q_1}{q_2} = f(t_1, t_2)$$

$$\frac{q_2}{q_3} = f(t_2, t_3)$$

$$\frac{q_1}{q_3} = f(t_1, t_3)$$

$$\left(\frac{q_1}{q_3}\right) \times \left(\frac{q_3}{q_2}\right) = \frac{f(t_1, t_3)}{f(t_2, t_3)} = \frac{q_1}{q_2} = f(t_1, t_2)$$

$$\therefore f(t_1, t_2) \text{ in dependent of } t_1$$

$$f(t_1,t_2) \text{ indep. of } t_3$$

$$\int_{0}^{\infty} \frac{f(t_1,t_3)=F(t_1)/F(t_3)}{f(t_2,t_3)=F(t_2)/F(t_3)}$$

$$\therefore \frac{q_1}{q_2} = \frac{F(t_1)}{F(t_2)}$$

Kelvin: the simplest function!!

Define:
$$F(t_1)\equiv T_1$$
, $F(t_2)\equiv T_2$

$$\therefore \frac{q_1}{q_2} = \frac{T_1}{T_2}$$

and
$$\eta_c = \frac{q_2 - q_1}{q_2} = \frac{T_2 - T_1}{T_2} = 1 - \frac{T_1}{T_2}$$

low temp(T_1) has a limiting value absolute! not relative zero temperature of cold reservoir T_1 =0, is η =100%

∴Kelvin Temperature scale ≡ Ideal gas temperature scale proof: one mole ideal gas, Carnot cycle

(1)A \rightarrow B, Reversible, isothermal expansion at T_2

$$\triangle U=0$$
, $Q=q_2=w_1=RT_2\ln\left(\frac{V_B}{V_A}\right)$

(2)B→C, Rev. adia. Expansion

Q=0,
$$w_2 = -\Delta U = -\int_{T_2}^{T_1} Cv dT = Cv(T_2 - T_1)$$

(3)C \rightarrow D, Rev. isoth. Comp. at T_1

$$\triangle$$
U=0, $Q = q_1 = w_3 = RT_1 \ln \left(\frac{V_D}{V_C} \right)$

(4)D→A, Rev. adia. Comp.

Q=0,
$$w_4 = -\Delta U = -\int_{T_1}^{T_2} Cv dT = Cv(T_1 - T_2)$$

$$\therefore \text{Total work} \qquad w = w_1 + w_2 + w_3 + w_4 = RT_2 \ln \left(\frac{V_B}{V_A}\right) + RT_1 \ln \left(\frac{V_D}{V_C}\right)$$

(1),(3)
$$P_AV_A=P_BV_B$$
, $P_CV_C=P_DV_D$

(2),(4)
$$P_BV_B^{\gamma}=P_CV_C^{\gamma}$$
, $P_DV_D^{\gamma}=P_AV_A^{\gamma}$

$$\therefore \frac{V_B}{V_A} = \frac{V_C}{V_D}$$

$$\therefore w = RT_2 \ln \left(\frac{V_B}{V_A}\right) - RT_1 \ln \left(\frac{V_C}{V_D}\right) = R(T_2 - T_1) \ln \left(\frac{V_B}{V_A}\right)$$

$$\therefore \eta_c = \frac{w}{q_2} = \frac{R(T_2 - T_1) \ln\left(\frac{V_B}{V_A}\right)}{RT_2 \ln\left(\frac{V_B}{V_A}\right)} = \frac{T_2 - T_1}{T_2} = 1 - \frac{T_1}{T_2}$$

§ 2nd Law of Thermodynamics

$$\therefore \eta_c = \frac{q_2 - q_1}{q_2} = \frac{T_2 - T_1}{T_2}$$

$$\therefore \frac{q_1}{q_2} = \frac{T_1}{T_2}$$
 i.e. $\frac{q_2}{T_2} - \frac{q_1}{T_1} = 0$

* Any cycle be broken down into "many" Carnot cycles

$$\therefore \sum_{i} \frac{q_i}{T_i} = \sum_{i} \frac{Q}{T} = 0$$

$$\oint \frac{\delta Q}{T} = 0 \qquad \text{cyclic integral}$$

... For loop ABA:

$$\oint dS = 0 = \int_A^B dS + \int_B^A dS = (S_B - S_A) + (S_A - S_B) = 0$$

∴2nd Law of Thermodynamics:

(1) Entropy function: $S = \frac{\delta Q_{rev}}{T}$

$$dS \equiv \frac{\delta Q_{rev}}{T}$$

$$\Delta S = S_{\scriptscriptstyle B} - S_{\scriptscriptstyle A} = \int_{\scriptscriptstyle A}^{\scriptscriptstyle B} \frac{\delta Q_{\scriptscriptstyle rev}}{T}$$

(2) Entropy of an isolated system: $\Delta S \ge 0$ \Leftrightarrow $\Delta S_{U,V} \ge 0$

Equilibrium process: $\triangle S_{U,V}=0$

Non-equilibrium process: $\triangle S_{U,V} > 0$

Entropy is increased!! or $\sum dS_i \ge 0$

§ Maximum Work for reversible process

state
$$A \rightarrow \text{state } B$$

$$U_B - U_A = Q - W$$

* Q and W can vary depending on path (degree of irreversibility)

$$\therefore dS_{system} = \frac{\delta Q_t}{T} + dS_{irr}$$

1st law $dU_{sys} = \delta Q_t - \delta W$

$$\therefore \delta Q_t = dU_{sys} + \delta w$$

$$dS_{sys} = \frac{dU_{sys} + \delta w}{T} + dS_{irr}$$

$$\therefore \delta w = TdS_{sys} - dU_{sys} - TdS_{irr}$$

$$\therefore dS_{irr} > 0$$

$$\therefore \delta w \leq (TdS_{sys} - dU_{sys})$$

$$A \rightarrow B$$
 $w \le T(S_B - S_A) - (U_B - U_A)$

i.e.
$$W_{max}=T(S_B-S_A)-(U_B-U_A)$$
 and $dS_{irr}=0$

Reversible process (path) has maximum work.#
If heat is absorbed (transferred) during a process

$$Q_{rev} > Q$$
 (irreversible)

See example 1 (Ex1):

§ Criterion for Equilibrium

* spontaneous change

state 1 (non-equil.) _Irrev. State 2 (equil.) of an isolated system
$$\triangle S_{tot} = (S_2 - S_1) > 0 \;, \quad S_2 > S_1$$

entropy S↑ ⇐⇒ reaching equil.

At equilibrium S_{U,V}=S_{max}

* Consider a chemical reation:

When $S_{U,V} = S_{max}$

Equil. State has a fixed composition

$$\text{(dS)}_{U,V} \geqq 0 \qquad \left\{ \begin{array}{l} >0, \quad \text{non-equil.} \\ =0, \quad \text{equil.} \end{array} \right.$$

§ Combined statement of 1st and 2nd Laws

1. 1st law:
$$dU=\delta Q - \delta w$$

2nd law:
$$dS = \frac{\delta Q_{rev}}{T}$$

for reversible mechanical work δw_{rev}=PdV

$$\therefore$$
 dU=TdS-PdV

Application restrictions: (1)Reversible

(2) closed system (const. composition & mass)

(3)mechanical work only

In general reversible: $dU=TdS-PdV-\delta w'+\sum_{i}\mu_{i}dn_{i}$

2.
$$U=U(S,V)$$

$$dU = \left(\frac{\partial U}{\partial S}\right) dS + \left(\frac{\partial U}{\partial V}\right) dV$$

$$\left(\frac{\partial U}{\partial S} \right)_{V} = T \quad , \quad \left(\frac{\partial U}{\partial V} \right)_{S} = -P$$

3.
$$S=S(U,V)$$

$$dS = \left(\frac{\partial S}{\partial U}\right)_{v} dU + \left(\frac{\partial S}{\partial V}\right)_{U} dV$$

$$\therefore dS = \frac{1}{T}dU + \frac{P}{T}dV$$

$$\therefore \left(\frac{\partial S}{\partial V} \right)_{U} = \frac{P}{T}$$

4.
$$dU=TdS-PdV$$

$$(dS)_{U,V} \ge 0$$
 implies $(dU)_{S,V} \le 0$

for a constant S,V system:

at equil. U_{S,V}=U_{min}

*
$$dU=TdS-PdV-\delta w$$

$$\therefore dS = \frac{dU}{T} + \frac{P}{T}dV + \frac{1}{T} \delta W'$$

$$dS_{U,V} \ge 0$$
, $\therefore \delta w' \ge 0$

$$..dU_{S,V} = -\delta w' \le 0$$

∴ $dU_{S,V}$ ↓ and at equil. $U_{S,V}$ = U_{min} δw ' can be chemical work or electric work

$$\delta w' = \sum_{i} \mu_{i} dn_{i} = \sum_{i} \left(\frac{\partial U}{\partial n_{i}} \right)_{ni,S,V} dn_{i}$$

§ Ex1: (p.56) compare \triangle S, W, Q, for one mole ideal gas

- (1) Reversible, isothermal expansion, $V_A \rightarrow V_B (V_B < V_A)$
- (2) Free expansion (adiabatic + constant T) $V_A \rightarrow V_B$ Sol:
- (1) dT=0, $\triangle U=0$

$$Q_{rev} = w_{rev} = \int_{VA}^{VB} P dV = RT \ln \left(\frac{V_B}{V_A} \right) > 0 \qquad \Re$$

$$\therefore \Delta S_{rev} = R \ln \left(\frac{V_B}{V_A} \right)$$

- (2) Free expansion, dT=0, Q=W=0 (no work done)
 - : Entropy is a state function,

$$\therefore \Delta S_{irr(free.\exp asiojn)} = \Delta S_{rev} = S_B - S_A = \int_a^B \frac{\delta Q_{rev}}{T} = \int_A^B dS$$

$$dS = \frac{dU}{T} + \frac{P}{T}dV = \frac{P}{T}dV = \frac{R}{V}dV$$

$$\therefore \Delta S_{irr} = \int_{A}^{B} \frac{R}{V} dV = R \ln \left(\frac{V_{B}}{V_{A}} \right)$$

i.e. no heat absored, and no work done

c.p. (1),(3)
$$W_{rev}-W_{free expansion}=W_{rev}=Q_{rev}$$

... Free expansion is the limit of irreversibility at which all "potential work" is degraded to heat and create entropy.

§ Ex2: 5 moles ideal gas, $C_v=1.5R$, $\gamma=\frac{5}{3}$, adiabatic expansion ($P_1=50 \text{ atm} \rightarrow P_2=10 \text{ atm}$, $T_1=300 \text{ K}$) T=?

(1) Reversible process, $T_2=?$

(2) Irreversible: W=4000J, $T_3=?$

$$T_2=?, T_3=?, \triangle S_{(2)irr}=?$$

Sol:

(1)
$$V_1 = \frac{nRT_1}{P_1} = 2.46$$
 liters

(Rev. + Adia.)
$$P_1V_1^{\gamma}=P_2V_2^{\gamma}$$

$$\therefore V2 = \left(\frac{P_1 V_1^{\gamma}}{P_2}\right)^{\frac{1}{\gamma}} = 6.47 \ liters$$

$$T_2 = \frac{P_2 V_2}{nR} = 158 K$$

note: Q=0,
$$\Delta U = n \int_{T_1}^{T_2} C_v dT = n C_v (T_2 - T_1) = 5 \times \frac{3}{2} R (158 - 300) = -8854 J$$

$$W = -\triangle U = +8854 J$$

$$\therefore dS = \frac{dU}{T} + \frac{P}{T}dV = \frac{dU}{T} + \frac{nR}{V}dV$$

$$\therefore \Delta S = \int_{T_1}^{T_2} \frac{nC_v dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V} = nC_v \ln \left(\frac{T_2}{T_1} \right) + nR \ln \left(\frac{V_2}{V_1} \right)$$

$$\therefore \Delta S = 5 \times \frac{3R}{2} \times \ln\left(\frac{158}{300}\right) + 5 \times R \times \ln\left(\frac{6.47}{2.46}\right) = 0.025R \approx 0.2 \ (J/K) = 0$$

Reversible Adiabatic $\Rightarrow \Delta S = 0$

$$\triangle$$
U= $-$ W= -4000 J

$$\Delta U = n \int_{T_1}^{T_3} C_{\nu} dT = n C_{\nu} (T_3 - T_1) = 5 \times \frac{3R}{2} \times (T_3 - 300) = -4000$$

$$T_3=236 \text{ K}$$

$$V_3 = \frac{nRT_3}{P_3} = 9.68 \ liters$$

state
$$1 \rightarrow \text{state } 3$$
 $\triangle S_{rev} = \triangle S_{irr}$

$$\therefore \triangle S_{(2)} > \triangle S_{(1)}$$